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Computational barrier at Sandia

CFD model

100 million cells
200,000 time steps

High simulation costs

6 weeks, 5000 cores
6 runs maxes out Cielo

Barrier

Fast-turnaround design Uncertainty quantification

Objective: break barrier via nonlinear model reduction
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ROM: state of the art [Benner et al., 2015]

Linear time-invariant systems: mature [Antoulas, 2005]

Balanced truncation [Moore, 1981]

Empirical balanced truncation [Willcox and Peraire, 2002, Rowley, 2005]

Moment matching
[Bai, 2002, Freund, 2003, Gallivan et al., 2004, Baur et al., 2011]

Loewner framework [Lefteriu and Antoulas, 2010, Ionita and Antoulas, 2014]

+ Reliable: guaranteed stability, a priori error bounds
+ Certified : sharp, computable a posteriori error bounds

Elliptic/parabolic PDEs (FEM): mature [Rozza et al., 2008]

Reduced-basis method
[Prud’Homme et al., 2001, Veroy et al., 2003, Barrault et al., 2004]

Subsystem-based reduced-basis method
[Maday and Rønquist, 2002, Phuong Huynh et al., 2013, Eftang and Patera, 2013]

+ Reliable: a priori error bounds
+ Certified : sharp, computable a posteriori error bounds

Nonlinear dynamical systems: unproven
Proper orthogonal decomposition (POD)–Galerkin

- Not reliable: Stability and accuracy not guaranteed
- Not certified : error bounds not sharp
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

Improve projection technique
Preserve problem structure

+ Low cost

Sample-mesh approach
Leverage time-domain data

+ Certification

Error bounds
Statistical error modeling

+ Reliability

A posteriori h-refinement
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
Improve projection technique [C. et al., 2011a, C. et al., 2015a]

Preserve problem structure

+ Low cost
Sample-mesh approach
Leverage time-domain data

+ Certification
Error bounds [C. et al., 2015a]

Statistical error modeling

+ Reliability
A posteriori h-refinement

Collaborators: M. Barone (Sandia), H. Antil (GMU)
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POD–Galerkin: offline data collection

dx
dt

= f (x ; t,µ); x(0,µ) = x0(µ), t ∈ [0,T ] , µ ∈ D

1 Collect ‘snapshots’ of the state
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POD–Galerkin: offline data collection

2 Data compression

Compute SVD: X1 X2 X3 = U ⌃ VT[ ]

Truncate: Φ = [u1 · · · up]
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POD–Galerkin: online projection

Full-order model:
dx
dt

= f (x ; t,µ), x(0,µ) = x0(µ)

1 x(t) ≈ x̃(t) = Φx̂(t)
⇡ =

2 ΦT (f (x̃ ; t,µ)− d x̃
dt ) = 0

⇡ =

( (
=

Galerkin ROM:
d x̂
dt

= ΦT f (Φx̂ ; t,µ), x̂(0,µ) = ΦTx0(µ)
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Cavity-flow problem. Collaborator: M. Barone (SNL)

Unsteady Navier–Stokes

DES turbulence model

1.2 million degrees of
freedom

Re = 6.3× 106

M∞ = 0.6

CFD code: AERO-F
[Farhat et al., 2003]
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Full-order model responses

vorticity field

pressure field
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POD–Galerkin failure
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- Galerkin ROMs unstable
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How to construct a ROM for nonlinear dynamical systems?

Optimize then discretize? (Galerkin)

Discretize then optimize? (Least-squares Petrov–Galerkin)

Full-order model
ODE

optimal
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
O∆E

time discretization

Full-order model
O∆E

optimal
projection

LSPG ROM
O∆E

Outstanding questions:

1 Which notion of optimality is better in practice?
2 Discrete-time error bounds?
3 Time step selection?
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Full-order model
ODE

time discretization

Full-order model
O∆E
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Full-order model (FOM)
ODE: time continuous

dx
dt

= f (x , t), x(0) = x0, t ∈ [0,T ]

O∆E, linear multistep schemes: rn (xn) = 0 , n = 1, ... ,N

rn (x) := α0x −∆tβ0f (x , tn) +
k∑

j=1

αjxn−j −∆t
k∑

j=1

βj f
(
xn−j , tn−j

)

xn = xn (explicit state update)

O∆E, Runge–Kutta: rni (xn
1, ... , xn

s ) = 0 , i = 1, ... , s

rni (x1, ... , x s) := x i − f (xn−1 + ∆t
s∑

j=1

aijx j , t
n−1 + ci∆t)

xn = xn−1 + ∆t
s∑

i=1

bixn
i (explicit state update)

This talk focuses on linear multistep schemes.
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Galerkin ROM: first optimize

Full-order model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretization

Full-order model
O∆E
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Galerkin: first optimize, then discretize

Full-order model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretization

Galerkin ROM
O∆E

time discretization

Full-order model
O∆E
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Galerkin ROM
ODE

d x̂
dt

= ΦT f (Φx̂ , t), x̂(0) = ΦTx0, t ∈ [0,T ]

+ Continuous velocity d x̂
dt is optimal

Theorem (Galerkin ROM: continuous optimality)

The Galerkin ROM velocity minimizes the time-continuous FOM residual:
d x̃
dt

(x , t) = arg min
v∈range(Φ)

‖v − f (x , t)‖2
2

O∆E
r̂n (x̂n) = 0, n = 1, ... ,N

r̂ n (x̂) := α0x̂−∆tβ0ΦT f (Φx̂ , tn)+
k∑

j=1

αj x̂n−j−∆t
k∑

j=1

βjΦ
T f
(

Φx̂n−j , tn−j
)

- Discrete state x̂n is not generally optimal

Can we fix this? Will doing so help?
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LSPG ROM: first discretize, then optimize

Full-order
model
ODE

Galerkin
projection

Galerkin ROM
ODE

time discretizationtime discretization

Full-order
model
O∆E

Galerkin
projection

Galerkin ROM
O∆E

Petrov–Galerkin
projection

LSPG ROM
O∆E
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LSPG ROM

FOM O∆E

rn (xn) = 0, n = 1, ... ,N

LSPG ROM O∆E:

x̂n = arg min
ẑ∈Rp
‖Arn (Φẑ) ‖2

2.

m

Ψn(x̂n)T rn (Φx̂n) = 0, Ψn(x̂) := ATA
∂rn

∂x
(Φx̂)Φ

A = I : LSPG [LeGresley, 2006, Bui-Thanh et al., 2008, C. et al., 2011a]

+ Discrete solution is optimal
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Does the LSPG ROM have a time-continuous representation?

Full-order
model
ODE

?
Galerkin

projection
Galerkin ROM

ODE

time discretizationtime discretization

Full-order
model
O∆E

Galerkin
projection

Galerkin ROM
O∆E

Petrov–Galerkin
projection

LSPG ROM
O∆E
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Does the LSPG ROM have a time-continuous representation?

Sometimes.

Full-order
model
ODE

Petrov–Galerkin
projection

LSPG ROM
ODE

time discretization

Galerkin
projection

Galerkin ROM
ODE

time discretizationtime discretization

Full-order
model
O∆E

Galerkin
projection

Galerkin ROM
O∆E

Petrov–Galerkin
projection

LSPG ROM
O∆E
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LSPG ROM: continuous representation

Theorem

The LSPG ROM is equivalent to applying a Petrov–Galerkin projection to
the FOM ODE with test basis

Ψ(x̂ , t) = ATA
(
α0I −∆tβ0

∂f
∂x

(x0 + Φx̂ , t)

)
Φ

if

1 βj = 0, j ≥ 1 (e.g., a single-step method),

2 the velocity f is linear in the state, or

3 β0 = 0 (i.e., explicit schemes).

Time-continuous test basis depends on
time-discretization parameters!
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Are the two approaches ever equivalent?

Galerkin: ΦT rn (Φx̂n) = 0

LSPG: Ψn(x̂n)T rn (Φx̂n) = 0

Does Ψn(x̂n) = Φ ever?

Yes.

Ψn(x̂) := ATA
∂r n

∂x
(Φx̂) = ATA

(
α0I −∆tβ0

∂f
∂x

(Φx̂ , tn)

)
Φ

Theorem

The two approaches are equivalent (Ψn(x̂) = Φ)

1 in the limit of ∆t → 0 with A = 1/
√
α0I ,

2 if the scheme is explicit (β0 = 0) with A = 1/
√
α0I , or

3 if ∂rn
∂x is positive definite with [∂r

n

∂x ]−1 = ATA.
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Runge–Kutta

Ψn
ij (x̂1, ... , x̂ s) :=AT

i Ai
∂rni
∂x j

(x̂1, ... , x̂ s)

=AT
i Ai

(
Iδij −∆taij

∂f
∂x

(xn−1 + ∆tΦ
s∑

k=1

aik x̂k , tn−1 + ci∆t)

)
Φ

Corollary

Galerkin projection is discrete-optimal (i.e., Ψn(x̂) = Φ) for
Runge–Kutta schemes with Ai = I in the limit of ∆t → 0.
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Discrete-time error bound

Theorem

If the following conditions hold:

1 f (·, t) is Lipschitz continuous with Lipschitz constant κ, and

2 ∆t is such that 0 < h := |α0| − |β0|κ∆t,

then

‖δxn
G‖ ≤

∆t

h

k∑
`=0

|β`|‖ (I − V) f
(
x0 + Φx̂n−`

G

)
‖+ 1

h

k∑
`=1

(|β`|κ∆t + |α`|) ‖δxn−`
G ‖

‖δxn
L‖ ≤

∆t

h

k∑
`=0

|β`|‖ (I − Pn) f
(
x0 + Φx̂n−`

L

)
‖+ 1

h

k∑
`=1

(|β`|κ∆t + |α`|) ‖δxn−`
L ‖,

with

δxn
G := xn

? −Φx̂n
G .

δxn
L := xn

? −Φx̂n
L

V := ΦΦT

Pn := Φ
(
(Ψn)TΦ

)−1
(Ψn)T
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LSPG ROM yields a smaller error bound

Theorem (Backward Euler)

If conditions (1) and (2) hold, then

‖δxn
G‖ ≤ ∆t

n−1∑
j=0

1

(h)j+1
‖ (I − V) f

(
x0 + Φx̂n−j

G

)
‖︸ ︷︷ ︸

ε
n−j
G

‖δxn
L‖ ≤ ∆t

n−1∑
j=0

1

(h)j+1
‖
(
I − Pn−j

)
f
(
x0 + Φx̂n−j

L

)
‖︸ ︷︷ ︸

ε
n−j
L

εkG = ‖Φx̂k
G −∆tf

(
x0 + Φx̂k

G

)
−Φx̂k−1

G ‖

εkL = ‖Φx̂k
L −∆tf

(
x0 + Φx̂k

L

)
−Φx̂k−1

L ‖ = min
y
‖Φy −∆tf (x0 + Φy)−Φx̂k−1

L ‖

Corollary (LSPG smaller error bound)

If x̂k−1
L = x̂k−1

G , then εkL ≤ εkG .
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LSPG ROM has an interesting time-step dependence

Corollary (Backward Euler)

Define

∆x̂ j
L := x̂ j

L − x̂ j−1
L and

∆x̄ j : full-space solution increment from x̂ j−1
L .

Then, the LSPG error can also be bounded as

‖δxn
L‖ ≤ ∆t(1 + κ∆t)

n−1∑

j=0

µn−j

(h)j+1
‖f (x̂ j−1

L + ∆x̄n−j)‖

with µj := ‖Φ∆x̂ j
L −∆x̄ j‖/‖∆x̄ j‖.

Effect of decreasing ∆t:

+ The terms ∆t(1 + κ∆t) and 1/(h)j+1 decrease

- The number of total time instances n increases

? The term µn−j may increase or decrease, depending on the
spectral content of the basis Φ
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Galerkin and LSPG responses for basis dimension p = 204
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(a) Galerkin
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(b) LSPG

- Galerkin ROMs unstable for long time intervals

+ LSPG ROMs accurate and stable (most time steps)
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LSPG ROM: superior performance
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(c) 0 ≤ t ≤ 0.55
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(d) 0 ≤ t ≤ 1.1
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(e) 0 ≤ t ≤ 1.54

X LSPG ROM yields a smaller error for all time intervals and
time steps.
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LSPG performance (t ≤ 12.5 sec)
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X An intermediate ∆t produces the lowest error and better speedup.

p = 564 case:

∆t = 1.875× 10−4 sec: relative error = 1.40%, time = 289 hrs

∆t = 1.5× 10−3 sec: relative error = 0.095%, time = 35.8 hrs
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Summary: Improve projection technique

Discrete optimality (LSPG) outperforms continuous optimality
(Galerkin) in practice

Equivalence conditions

1 Limit of ∆t → 0
2 Explicit schemes
3 Positive definite residual Jacobians

Discrete-time error bounds

LSPG ROM yields smaller error bound than Galerkin
Ambiguous role of time step ∆t

Numerical experiments

LSPG ROM yields a smaller error than Galerkin
Equivalent as ∆t → 0
Error minimized for intermediate ∆t

Reference: C., Barone, and Antil. Galerkin v. least-squares
Petrov–Galerkin projection in nonlinear model reduction.
arXiv e-print, (1504.03749), 2015.
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

Improve projection technique
Preserve problem structure

+ Low cost

Sample-mesh approach [C. et al., 2011b, C. et al., 2013]

Leverage time-domain data

+ Certification

Error bounds
Statistical error modeling

+ Reliability

A posteriori h-refinement

Collaborators: C. Farhat, J. Cortial (Stanford)
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LSPG performance (t ≤ 2.5 sec)

∆t
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+ Always sub-3% errors

- More expensive than the FOM

FOM simulation: 1 hour, 48 CPU
LSPG ROM simulation (fastest): 1.3 hours, 48 CPU
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Hyper-reduction via Gappy POD [Everson and Sirovich, 1995]

x̂n = arg min
ẑ∈Rp

‖Arn (Φẑ) ‖2
2.

Can we select A to make this inexpensive?

1. rn(x) ≈ r̃n(x) = ΦR r̂n(x) 2. r̂n(x) = arg min
r̂
‖PΦR r̂ − Prn(x)‖2

c

⇡ =k k�= arg min
r̂

2

⇡ =k k�= arg min
r̂

2

⇡ =k k�= arg min
r̂

2

x̂n = arg min
ẑ∈Rp
‖r̃n (Φẑ) ‖2

2 = arg min
ẑ∈Rp
‖ΦR r̂n (Φẑ) ‖2

2 = arg min
ẑ∈Rp
‖r̂n (Φẑ) ‖2

2

= arg min
ẑ∈Rp
‖ (PΦR)+ P︸ ︷︷ ︸

A

rn (Φẑ) ‖2
2.

+ GNAT: A = (PΦR)+ P leads to low-cost

Offline: Construct ΦR (POD) and P (greedy method)
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Sample mesh: HPC implementation

x̂n = arg min
ẑ∈Rp

‖ (PΦR)+ Prn (Φẑ) ‖2
2

Key : GNAT samples only a few entries of the residual Prn

Idea: Extract minimal subset of the mesh

Related : subgrid [Haasdonk et al., 2008], reduced integration domain
[Ryckelynck, 2005]

Sample mesh: 4.1% nodes, 3.0% cells

+ Small problem size: can run on many fewer cores
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GNAT performance (t ≤ 12.5 sec)

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag

+ 229x CPU-hour savings

FOM: 5 hour x 48 CPU
GNAT ROM: 32 min x 2 CPU
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
Improve projection technique
Preserve problem structure

+ Low cost
Sample-mesh approach
Leverage time-domain data [C. et al., 2015b]

+ Certification
Error bounds
Statistical error modeling

+ Reliability
A posteriori h-refinement

Collaborators: L. Brencher, B. Haasdonk, A. Barth (U Stuttgart)
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy

Improve projection technique
Preserve problem structure

+ Low cost

Sample-mesh approach
Leverage time-domain data

+ Certification

Error bounds
Statistical error modeling

+ Reliability

A posteriori h-refinement [C., 2015]
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GNAT performance (t ≤ 12.5 sec)

vorticity field pressure field

GNAT
ROM

FOM

+ < 1% error in time-averaged drag

+ 229x CPU-hour savings

FOM: 5 hour x 48 CPU
GNAT ROM: 32 min x 2 CPU

- However, ROMs are not guaranteed to be accurate.

ROM accuracy is limited by the information in Φ.
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Example: inviscid Burgers equation [Rewienski, 2003]

∂u(x , τ)

∂τ
+

1

2

∂
(
u2 (x , τ)

)

∂x
= 0.02e0.02x

u(0, τ) = 3, ∀τ > 0

u(x , 0) = 1, ∀x ∈ [0, 100] ,

Discretization: Godunov’s scheme

Simulate τ ∈ [0, 50]

FOM: 250 degrees of freedom

ROM: 150 degrees of freedom

Φ constructed via POD using snapshots in τtrain ∈ [0, 2.5]
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ROM accuracy limited by relevance of training data

 

 

ROM

FOM

u

x

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

- ROM inaccurate when outside predictive domain of Φ
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Existing ROM adaptation methods

A priori adaptation: unique ROM for separate regions of the

input space [Amsallem and Farhat, 2008, Amsallem et al., 2009,

Eftang et al., 2010, Eftang et al., 2011, Haasdonk et al., 2011,

Drohmann et al., 2011, Peherstorfer et al., 2014]

time domain [Drohmann et al., 2011, Dihlmann et al., 2011]

state space
[Amsallem et al., 2012, Washabaugh et al., 2012, Peherstorfer et al., 2014].

+ Reduces the dimension of the ROM
- No mechanism to improve the ROM a posteriori

A posteriori adaptation

Revert to the FOM, solve it, and add solution to the basis
[Eldred et al., 2009, Arian et al., 2000, Ryckelynck, 2005]

+ Improves the ROM a posteriori
- Incurs large-scale operations

Goal: Cheap, a posteriori improvement of the ROM
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Main idea
ROM analog to mesh-adaptive h-refinement

‘Split’ basis vectors

finite element h-refinement ROM h-refinement
Generate hierarchical subspaces

ROM converges to the FOM
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h-refinement ingredients

1 Adaptive algorithm

2 Refinement

finite element h-refinement ROM h-refinement

3 Error indicators

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
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Ingredient 1: Adaptive algorithm

1 Adaptive algorithm

2 Refinement

finite element h-refinement ROM h-refinement

3 Error indicators

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
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Adaptive algorithm

Algorithm 1 Outer loop

Input: timestep n, current basis Φ
Output: updated basis Φ, generalized state x̂n

1: Solve ΦT rn(Φx̂n;µ) = 0 for current ROM solution x̂n.
2: if estimate of output error δs is ‘too large’ then
3: Refine basis: Φ← Refine (Φ, x̂n).
4: Return to Step 1.
5: end if
6: if mod (n, nreset) = 0 then

7: Reset basis: Φ← Φ(0).
8: end if
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Adaptive algorithm

Algorithm 2 Refine

Input: initial basis Φ, reduced solution x̂
Output: refined basis Φ

1: Compute prolongation operator I hH and fine basis Φh (Ingredient 2)
2: Solve: Compute coarse adjoint solution (Ingredient 3)
3: Estimate: Compute fine error indicators (Ingredient 3)
4: Mark: Identify basis vectors to refine I
5: for i ∈ I do
6: Refine: Split φi into child vectors
7: end for
8: Compute QR factorization with column pivoting Φ = QR, RΠ̄ = Q̄R̄
9: Ensure full-rank matrix Φ← Φ [π̄1 · · · π̄r ]
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Ingredient 2: Refinement

1 Adaptive algorithm

2 Refinement

finite element h-refinement ROM h-refinement

3 Error indicators

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
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Tree data structure
d = 1

C (1) = {2, 3}
E (1) = {1, ... , 6}

d = 2
C (2) = {4, 5, 6}
E (2) = {1, 3, 4}

d = 4
C (4) = ∅
E (4) = {1}

d = 5
C (5) = ∅
E (5) = {3}

d = 6
C (6) = ∅
E (6) = {4}

d = 3
C (3) = {7, 8}
E (3) = {2, 5, 6}

d = 7
C (7) = ∅
E (7) = {2}

d = 8
C (8) = {9, 10}
E (8) = {5, 6}

d = 9
C (9) = ∅
E (9) = {5}

d = 10
C (10) = ∅
E (10) = {6}

Tree data structure with m nodes
child function C : N (m)→ P (N (m))
element function E : N (m)→ P (N (N))

Requirements

1 Root node includes all elements E (1)

2 Each element has a single leaf node
3 Disjoint support of children E (j) ∩ E (k) = ∅, ∀j 6= k ∈ C (i)

4 ∪j∈C(i) E (j) = E (i)
+ 1–2 ensure the ROM converges to the FOM
+ 4 ensures hierarchical refined subspaces
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Tree example: N = 6

d = 1
C (1) = {2, 3}

E (1) = {1, ... , 6}

d = 2
C (2) = {4, 5, 6}
E (2) = {1, 3, 4}

d = 4
C (4) = ∅
E (4) = {1}

d = 5
C (5) = ∅
E (5) = {3}

d = 6
C (6) = ∅
E (6) = {4}

d = 3
C (3) = {7, 8}
E (3) = {2, 5, 6}

d = 7
C (7) = ∅
E (7) = {2}

d = 8
C (8) = {9, 10}
E (8) = {5, 6}

d = 9
C (9) = ∅
E (9) = {5}

d = 10
C (10) = ∅
E (10) = {6}

Φ(0) =




φ
(0)
11

φ
(0)
21

φ
(0)
31

φ
(0)
41

φ
(0)
51

φ
(0)
61




→ Φ =




φ
(0)
11 0 0 0

0 φ
(0)
21 0 0

φ
(0)
31 0 0 0

φ
(0)
41 0 0 0

0 0 φ
(0)
51 0

0 0 0 φ
(0)
61




.
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Tree construction
State variables that are strongly correlated or

anticorrelated should reside in the same tree node.

1 Normalize state-variable observation history
2 If first observation is negative, flip over origin
3 Recursively apply k-means clustering
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2

observation 1

5

4

2

6

3

1
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35

(j) before modification
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n
2

observation 1
0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

(k) after modification

State-variable observation history (variable index labeled).
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Refinement machinery

ΦH = ΦhI hH

coarse basis ΦH ∈ RN×p

fine basis Φh ∈ RN×q with q =
∑p

i=1 |C (di )|
prolongation operator I hH ∈ {0, 1}q×p
prolongated generalized coordinates x̂h

H = I hH x̂H

restriction operator IHh =
(
I hH
)+
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Ingredient 3: Error indicators

1 Adaptive algorithm

2 Refinement

finite element h-refinement ROM h-refinement

3 Error indicators: a) dual solve (coarse), b) prolongation (fine)

dual solve prolongation dual solve prolongation

finite element h-refinement ROM h-refinement
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Dual-weighted residual error indicators

Goal-oriented: reduce the error in output g(x)

Analogous to duality-based error control for

differential equations [Estep, 1995, Pierce and Giles, 2000]

finite elements [Babuška and Miller, 1984, Becker and Rannacher, 1996,

Rannacher, 1999, Bangerth and Rannacher, 1999, Becker and Rannacher, 2001,

Bangerth and Rannacher, 2003],
finite volumes [Venditti and Darmofal, 2000, Venditti and Darmofal, 2002,

Park, 2004, Nemec and Aftosmis, 2007]

discontinuous Galerkin methods [Lu, 2005, Fidkowski, 2007]

Nonlinear model reduction Kevin Carlberg 54



Dual-weighted residual error indicators
Approximate fine output:

g(Φhx̂h) ≈ g(ΦH x̂H) +
∂g

∂x
(ΦH x̂H)Φh(x̂h − I hH x̂H) (1)

Approximate the fine residual:

0 = (Φh)T r(Φhx̂h) ≈ (Φh)T r(ΦH x̂H)+(Φh)T
∂r
∂x

(ΦH x̂H)Φh(x̂h − I hH x̂H)

Solve for the error:

(x̂h − I hH x̂H) ≈ −[(Φh)T
∂r
∂x

(ΦH x̂H)Φh]−1(Φh)T r(ΦH x̂H) (2)

Substitute (2) in (1):

g(Φhx̂h)− g(ΦH x̂H) ≈ −(ŷh)T (Φh)T r(ΦH x̂H) ,

with the fine adjoint solution ŷh ∈ Rq satisfying

(Φh)T
∂r
∂x

(ΦH x̂H)TΦhŷh = (Φh)T
∂g

∂x
(ΦH x̂H)T .
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Dual-weighted residual error indicators

g(Φhx̂h)− g(ΦH x̂H) ≈ −
(
ŷh
)T

(Φh)T r(ΦH x̂H) (3)

(Φh)T
∂r
∂x

(ΦH x̂H)TΦhŷh = (Φh)T
∂g

∂x
(ΦH x̂H)T (4)

We want to avoid fine solve (4), so approximate ŷh as

ŷh
H = I hH ŷH ,

where ŷH is the coarse adjoint solution to

(ΦH)T
∂r
∂x

(ΦH x̂H)TΦH ŷH = (ΦH)T
∂g

∂x
(ΦH x̂H)T .

Substituting ŷh
H for ŷh in (3) yields cheaply computable

g(Φhx̂h)− g(ΦH x̂H) ≈ −(ŷh
H)T (Φh)T r(ΦH x̂H).

The RHS can be bounded by cheaply computable error
indicators

|
(
ŷh
H

)T
(Φh)T r(ΦH x̂H)| ≤

q∑

i=1

δhi , δhi = |
[
ŷh
H

]
i

(
φh

i

)T
r
(

ΦH x̂H
)
|.
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Previous example

 

 

ROM

FOM

u

x

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Generated by Φ ∈ R250×150 using τtrain ∈ [0, 2.5]

Now try h-adaptivity with Φ(0) ∈ R250×10, τtrain ∈ [0, 2.5].

Nonlinear model reduction Kevin Carlberg 57



Previous example with h-adaptivity

 

 

ROM

FOM

u

x

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

dim Φ(0) = 10

meank(dim Φ(k)) = 44.3

h-adaptation allows the ROM to capture phenomena not
present in the training data!
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h-adaptivity enables error control
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(a) tolerance ε = 0.35
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(b) tolerance ε = 0.05

 

 

ROM

FOM

u

x
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1

1.5

2

2.5

3

3.5

4

4.5
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5.5

(c) tolerance ε = 0.01

ε = 0.35 ε = 0.05 ε = 0.01
average basis dimension

33.6 44.2507 53.9
per Newton iteration

relative error (%) 12.2 0.51 0.078
online time (seconds) 4.61 4.63 7.64
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Summary: a posteriori h-refinement

Adaptive h-refinement via splitting

+ Incrementally improves ROM
+ Does not require large-scale operations
+ Enables error control
+ Extends utility of ROMs to hyperbolic PDEs

Reference: C., Adaptive h-refinement for reduced-order
models. International Journal for Numerical Methods in
Engineering, 102(5):1192–1210, 2015.
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Our research goal

Nonlinear model-reduction methods that are
accurate, low cost, certified, and reliable.

+ Accuracy
Improve projection technique
Preserve problem structure

+ Low cost
Sample-mesh approach
Leverage time-domain data

+ Certification
Error bounds
Statistical error modeling [Drohmann and C., 2015]

+ Reliability
A posteriori h-refinement

Collaborator: M. Drohmann (Sandia)
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Strategies for ROM error quantification
1 Rigorous error bounds

+ independent of input-space dimension
- high effectivity (overestimation), especially for nonlinear, time

depedent problems
- improving effectivity incurs high costs

[Huynh et al., 2010, Wirtz et al., 2012] or intrusive reformulation of
discretization [Yano et al., 2012]

- not amenable to statistics

2 Multifidelity correction [Eldred et al., 2004]
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(ii) RVM

training point mean 95% confidence “uncertainty of mean”

error �

error indicator ⇢

z
zlow

�̃z

inputs µ
model low-fidelity error as a function of inputs
‘correct’ low-fidelity outputs with model

+ amenable to statistics
- curse of dimensionality
- ROM errors highly oscillatory in the input space

[Ng and Eldred, 2012]
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Data-driven observation
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(∆µ

u ; |||δu|||)

ROMs generate error indicators that correlate with the error

Main idea: map error indicators to a distribution over the
true error using Gaussian process regression

+ independent of input-space dimension

Reduced-order model error surrogates
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ROMES
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(ii) RVM

training point mean 95% confidence “uncertainty of mean”

error �

error indicator ⇢error indicator ⇢

tranformed error
d(�)

Approximate deterministic µ 7→ d(δ) by stochastic ρ(µ) 7→ d̃
d : invertible transformation function
d̃ : random variable for transformed error.
δ̃ := d−1(d̃): random variable for the error

ROMES ingredients:
1 error indicators ρ
2 transformation function d
3 statistical model: Gaussian process

Desired conditions
1 indicators ρ(µ) are low dimensional and cheaply computable
2 distribution of random variable δ̃ has low variance
3 statistical model is validated
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Normed errors: δ(µ) = ‖x(µ)−Φx̂(µ)‖
ROMs often equipped with bounds ∆(µ) ≥ δ(µ) ≥ 0

Bound effectivity η(µ) := ∆(µ)
δ(µ) ≥ 1 often lies in a small range:

η1 ≤ η(µ) ≤ η2, ∀µ
log ∆(µ)− log η1 ≥ log δ(µ) ≥ log ∆(µ)− log η2, ∀µ

Ingredient 1: indicator ρ = log ∆

Also consider cheaper ρ = log ‖r(Φx̂(µ);µ)‖2 because

∆µ
x (µ) :=

‖r(Φx̂(µ);µ)‖2√
αLB(µ)

≥ |||x(µ)−Φx̂(µ)|||

∆x(µ) :=
‖r(Φx̂(µ);µ)‖2

αLB(µ)
≥ ‖x(µ)−Φx̂(µ)‖Xh

and αLB(µ) is costly to compute.

Ingredient 2: transformation function d = log
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General errors: δ(µ) = g(x(µ))− g(Φx̂(µ))

Recall from before that dual-weighted residuals lead to

g(x)− g(Φx̂) ≈ −yT r(Φx̂).

with the adjoint solution satisfying

∂r
∂x

(Φx̂)Ty =
∂g

∂x
(Φx̂)

To avoid this costly solve, we approximate it as y ≈ Y ŷ with

Y T ∂r
∂x

(Φx̂)TY ŷ = Y T ∂g

∂x
(Φx̂)

such that

g(x)− g(Φx̂) ≈ −ŷTY T r(Φx̂) .

Ingredient 1: indicator ρ = ŷTY T r(Φx̂)
+ Uncertainty control: can add columns to dual basis Y

Ingredient 2: transformation function d = id
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Ingredient 3: Gaussian process [Rasmussen and Williams, 2006]

Definition (Gaussian process)

A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

d̃(ρ) ∼ GP(m(ρ), k(ρ, ρ′))

mean function m(ρ); covariance function k(ρ, ρ′)

given a training set {(d(δi ), ρi )}, can infer m(ρ) and k(ρ, ρ′)

Consider kernel regression [Rasmussen and Williams, 2006]
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Kernel regression [Rasmussen and Williams, 2006]
C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a↵ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f⇤ according to the
prior is 

f
f⇤

�
⇠ N

✓
0,


K(X, X) K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.18)

If there are n training points and n⇤ test points then K(X, X⇤) denotes the
n ⇥ n⇤ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X⇤, X⇤) and K(X⇤, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

(d) prior

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006,
ISBN 026218253X. c� 2006 Massachusetts Institute of Technology. www.GaussianProcess.org/gpml
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Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp�xq| by |xp�xq|/` in eq. (2.16) for some positive constant ` we could change
the characteristic length-scale of the process. Also, the overall variance of the magnitude

random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors a↵ect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the
observations are noise free, that is we know {(xi, fi)|i = 1, . . . , n}. The joint joint prior

distribution of the training outputs, f , and the test outputs f⇤ according to the
prior is 

f
f⇤

�
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✓
0,


K(X, X) K(X, X⇤)
K(X⇤, X) K(X⇤, X⇤)

�◆
. (2.18)

If there are n training points and n⇤ test points then K(X, X⇤) denotes the
n ⇥ n⇤ matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X⇤, X⇤) and K(X⇤, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al- graphical rejection

(e) posterior

prior: d̃(ρ) ∼ N (0,K
(
ρ, ρ
)

+ σ2I )

k(ρi , ρj) = exp−‖ρi−ρj‖2

2r2 is a positive definite kernel

ρ :=
[
ρ

train
ρ

predict

]T

posterior: d̃(ρpredict) ∼ N (m(ρpredict), cov(ρpredict))
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ROMES Algorithm

Offline

1 Populate ROMES database {(d(δ(µ)), ρ̄(µ)) | µ ∈ D}, where
ρ̄ denotes candidate indicators.

2 Identify a few error indicators ρ ⊂ ρ̄ that lead to a
low-variance GP.

3 Construct the Gaussian process d̃(ρ) ∼ GP(m(ρ), k(ρ, ρ′)) by
Bayesian inference.

Online (for any µ? ∈ D)

1 compute the ROM solution

2 compute error indicators ρ(µ?)

3 obtain d̃(ρ(µ?)) ∼ N (m(ρ(µ?))), k(ρ(µ?), ρ(µ?))

4 obtain random variable for the error δ̃(µ?) = d−1(d̃(µ?))

5 correct the ROM solution
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Thermal block

1 2 3

4 5 6

7 8 9

ΓD

ΓN1

ΓN0

4c(x ;µ)u(x ;µ) = 0 in Ω x(µ) = 0 on ΓD

∇c(µ)x(µ) · n = 0 on ΓN0 ∇c(µ)x(µ) · n = 1 on ΓN1

Inputs µ ∈ [0.1, 10]9 define diffusivity c in subdomains

ROM constructed via RB–Greedy [Patera and Rozza, 2006]
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Error #1: energy norm of error δ(µ) = |||x(µ)− x̂(µ)|||M. DROHMANN, K. CARLBERG 7
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Figure 2. Relationship between RB error bounds �u, residual norms kr(V û; µ)k, and the true state-space
errors |||�u|||, visualized by evaluation of 200 random sample points in the input space. Here, |||·||| denotes the
energy norm defined in Section 5.1.

logarithm) that can be specified to facilitate construction of the statistical model. We can
then interpret the statistical model of the error as a random variable �̃ : ⇢ 7! d�1(m̃(⇢)).

Three ingredients must be selected to construct this mapping m̃: 1) the error indicators
⇢, 2) the transformation function d, and 3) the methodology for constructing the statistical
model from the training data. We will make these choices such that the stochastic mapping
satisfies the following conditions:

1. The indicators ⇢(µ) are cheaply computable and low dimensional given any µ 2 P.
In practice, they should also incur a reasonably small implementation e↵ort, e.g., not
require modifying the underlying high-fidelity model.

2. The mapping m̃ exhibits low variance, i.e., E
h
(m̃(⇢(µ))� E [m̃(⇢(µ))])2

i
is ‘small’ for

all µ 2 P. This ensures that little additional epistemic uncertainty is introduced.
3. The mapping m̃ is validated :

(3.1) !validation (!) ⇡ !, 8! 2 [0, 1) ,

where !validation (!) is the frequency with which validation data lie in the !-confidence
interval predicted by the statistical model

(3.2) !validation (!) :=
card ({µ 2 Pvalidation | d(�(µ)) 2 C! (µ)})

card (Pvalidation)
.

Here, the validation set Pvalidation ⇢ P should not include any of the points µn, n =
1, . . . , N employed to train the error surrogate, and the confidence interval C! (µ) ⇢ R,
which is centered at the mean of m̃(⇢(µ)), is defined for all µ 2 P such that

(3.3) P[m̃(⇢(µ)) 2 C! (µ))] = !.

In essence, validation assesses whether or not the data do indeed behave as random
variables with probability distributions predicted by the statistical model.

+ Residual norm and error bound correlate with error

16 ROMES METHOD
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Figure 4. Visualization of ROMES surrogates (� = |||�u||| and k�ukX , ⇢ = log r, d = log), computed using
N = 100 training points and the (i) GP kernel method and (ii) RVM.

linear relationship between the indicators and true errors (see Section 4.2). Because Legendre
polynomials are defined on the interval [�1, 1], we must transform and scale this domain to
span the possible range of indicator values. For this purpose, we apply the heuristic of setting
the domain of the polynomials to be 20% larger than the interval bounded by the smallest
and largest indicator values:

(5.6) [⇢min � 0.1(⇢max � ⇢min),⇢max + 0.1(⇢max � ⇢min)] ,

where ⇢min = minµ2Plearn
⇢(µ) and ⇢max = maxµ2Plearn

⇢(µ). We include Legendre polynomi-
als of orders 0 to 4; however, the RVM method typically discards the higher order polynomials
due to the near-linear relation between indicators and errors.

Figure 4 depicts the ROMES surrogate |̂||�u||| generated by both machine-learning methods

using all 100 training points. For comparison, we also create ROMES surrogates k̂�ukX for
errors in the parameter-independent norm k·kX of the state space X = H1

0 . In addition to
the expected mean of the inferred surrogate, the figure displays two 95%-confidence intervals
for the prediction (see Remark 4.1):

(i) The darker shaded interval corresponds to the confidence interval arising from the
inherent uncertainty in the error due to the non-uniqueness of the mapping ⇢ 7! |||�u|||, i.e.,
the inferred variance �2 of Eq. (4.5).

(ii) The lighter shaded interval also includes the ‘uncertainty in the mean’ due to a lack
of training data, i.e., ⌃ of Eq. (4.5). With an increasing number of training points, this area

+ ROMES (ρ = log ‖r(Φx̂(µ);µ)‖2, d = log) promising
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Gaussian process validated
18 ROMES METHOD
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0.95 0.68 0.89 0.92 0.93
0.98 0.76 0.93 0.95 0.96
0.99 0.80 0.94 0.96 0.97
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Figure 5. Gaussian-process validation for the ROMES surrogate (GP kernel, � = |||�u|||, ⇢ = log r,
d = log) with a varying number of training points N . The histogram corresponds to samples of D(µ) and the
red curve depicts the probability distribution function N (0,�2). The table reports how often the actual error
lies in the inferred confidence intervals.

The reason multifidelity correction fails for most reduced-order models is twofold. First,
the mapping µ 7! �s can be highly oscillatory in the input space. This behavior arises from the
fact the the reduced-order model error is zero at the (greedily-chosen) ROM training points but
grows (and can grow quickly) away from these points. Such complex behavior requires a large
number of error-surrogate training points to accurately capture. In addition, the number
of system inputs is often large (in this case nine); this introduces curse-of-dimensionality
di�culties in modeling the error. Figure 6(ii) visualizes this problem. The depicted mapping
between the first two parameter components µ1, µ2 and the output error �s(µ) displays no
structured behavior. As a result, there is no measurable improvement of the corrected output

sred + ]�s,MF over the evaluation of the ROM output sred alone.

In order to quantify the performance of the error surrogates, we introduce a normalized
expected improvement

(5.8) I(e�, µ) :=

������

�s(µ)�mode
⇣
e�(⇢(µ))

⌘

�s(µ)

������
.
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Error #2: compliant-output error δ(µ) = |y(µ)− yred(µ)|
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Figure 6. Relationship between (i) ROMES error indicators and the compliant-output error and (ii) the
first two parameter components and the (compliant) output error, visualized by evaluation of 200 random
sample points in the input space. Clearly, the observed structure in the former relationship is more amenable
to constructing a Gaussian process.

If this value is less than one, then the exected corrected output sred +e� is more accurate than
the ROM output sred itself for point µ 2 P, i.e., the additive error surrogate improves the
prediction of the ROM. On the other hand, values above one indicate that the error surrogate
worsens the ROM prediction.

Figure 7 reports the mean, median, standard deviations, and extrema for the expected
improvement (5.8) evaluated for all validation points Pvalidation and a varying number of

training points. Here, we also compare with the performance of the error surrogate g�uni,
which is defined as a uniform distribution on the interval

⇥
�LB

s (µ),�s(µ)
⇤
, where �LB

s (µ)
and �s(µ) are the the lower and upper bounds for the output error, respectively. Note that
g�uni does not require training data, as it is based purely on error bounds.

The expected improvement for the ROMES output-error surrogate I(e�s, µ) as depicted
in Figure 7(i) is approximately 0.2 on average, which constitutes an improvement of nearly
an order of magnitude. Further, the maximum expected improvement almost always remains
below 1; this implies that the corrected ROM output is almost always more accurate than the
ROM output alone.

On the other hand, the expected improvement generated by the error surrogate g�uni is
always greater than one, which means that its correction always increases the error. This
arises from the fact that the center of the interval

⇥
�LB

s (µ),�s(µ)
⇤

is a poor approximation
for the true error.

In addition, Figure 7(ii) shows that the expected improvement produced by the multifidelity-

correction surrogate I
⇣
]�s,MF, µ

⌘
is often far greater than one. This shows that the multifidelity-

correction approach is not well suited for this problem. Presumably, with (far) more training
points, these results would improve.

Again, we can validate the Gaussian-process assumptions underlying the error surrogates.
For N = 100 training points, Figure 8 compares a histogram of deviation of the true error
from the surrogate mean to the inferred probability density function. The associated table

+ ROMES: residual and error bound correlate with error

- Multifidelity correction: inputs are poor indicators
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Gaussian-process validation
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as the number of training points increases, as this e↵ectively decreases the uncertainty due
to a lack of training. In addition, only a moderate number of training points (around 20)
is required to generate a reasonably converged ROMES surrogate. On the other hand the
multifidelity-correction surrogate exhibits no such convergence when fewer than 100 training
points are used.
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Figure 9. Gaussian-process validation for the ROMES surrogate (GP kernel, compliant � = �s, ⇢ = log r,
d = log) and multifidelity-correction surrogate (GP kernel, compliant � = �s, ⇢ = µ, and d = idR) and a
varying number of training points N . The plots depict how often the actual error lies in the inferred confidence
intervals.

5.4. Reduced-basis error bounds. In this section, we compare the reduced-basis error

bound �µ
u (S1.14) with the probabilistically rigorous ROMES surrogates |̂||�u|||

c
(2.7) with

rigor values of c = 0.5 and c = 0.9 as introduced Section 3.3.5 The ROMES surrogate is
constructed with the GP kernel method and ingredients � = |||�u|||, ⇢ = log r, and d = log.
As discussed in Section 2.3 the error-bound e↵ectivity (2.7) is important to quantify the
performance of these bounds; a value of 1 is optimal, as it implies no over-estimation.

As the probabilistically rigorous ROMES surrogates |̂||�u|||
c

are stochastic processes, we
can measure their (most common) e↵ectivity as

(5.9) ⌘(c, µ) :=
mode

⇣
|̂||�u|||

c
(⇢(µ))

⌘

|||�u(µ)||| .

The top plots of Figure 10 report the mean, median, standard deviation, and extrema
of the e↵ectivities ⌘(0.5, µ) and ⌘(0.9, µ) for all validation points µ 2 Pvalidation. Again, we

compare with g�uni, which is a uniform distribution on an interval whose endpoints correspond
to the lower and upper bounds for the error |||�u(µ)|||. We also compare with the corresponding

5Note that c = 0.5 implies no modification to the original ROMES surrogate, as |̂||�u|||
0.5

= |̂||�u||| (see
Eqs. (3.17)–(3.19)).

+ ROMES: confidence intervals converge

- Multifidelity correction: confidence intervals do not converge
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Error reduction

expected improvement =
|s(µ)− sred(µ)−mode(δ̃s(µ))|

|s(µ)− sred(µ)|20 ROMES METHOD
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Figure 7. Expected improvement I(e�, µ) for a varying number of training points N : (i) ROMES (GP

kernel, compliant � = �s, ⇢ = log r, d = log) with uniform distribution based on reduced-basis error bounds g�uni

and (ii) multifidelity correction (GP kernel, compliant � = �s, ⇢ = µ, and d = idR). (1: no improvement, > 1:
error worsened, < 1: error improved).
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Figure 8. Gaussian-process validation for the ROMES surrogate (GP kernel, compliant � = �s, ⇢ = log r,
d = log) and multifidelity-correction surrogate (GP kernel, compliant � = �s, ⇢ = µ, and d = idR) using
N = 100 training points The histogram corresponds to samples of D(µ) and the red curve depicts the probability
distribution function N (0,�2). The table reports how often the actual error lies in the inferred confidence
intervals. Clearly, this validation test fails for the multilfidelity-correction surrogate.

reports how often the validation data lie in inferred confidence intervals. We observe that
the confidence intervals are valid for the ROMES surrogate, but are not for the multifidelity-
correction surrogate, as the bins do not align with the inferred distribution. Figure 9 depicts
the convergence of these confidence-interval validation metrics as the number of training points
increases. As expected (see Remark 4.1) the ROMES observed confidence intervals more
closely align with the confidence intervals arising from the inherent uncertainty (i.e., �2)

+ ROMES: reduces error by roughly an order of magnitude

- Multifidelity correction: often increases the error

Nonlinear model reduction Kevin Carlberg 75



Error #3: error in general output26 ROMES METHOD
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Figure 15. Relationship between between dual-weighted-residual indicators ⇢1 = yred,1(µ)tr (ured; µ) and
errors in the (non-compliant) first output �s1 .

5.6. Multiple and non-compliant outputs. Finally, we assess the performance of ROMES
on a model with multiple and non-compliant output functionals as discussed in Section 3.2.2.
For this experiment, we set two outputs to be temperate measurements at points x1 and x2:

si (µ) := gi (u (µ)) := ḡi (u (µ)) =

Z

⌦
�Dirac(x� xi)u (xi; µ) dx = u (xi; µ) , i = 1, 2.(5.11)

where �Dirac denotes the Dirac delta function. In this case, we construct a separate ROMES
surrogates for each output error f�s1 and f�s2 . As previously discussed, we use dual-weighted
residuals as indicators ⇢i(µ) = yred,i(µ)tr (ured; µ), i = 1, 2 and no transformation d ⌘ idR.
This necessitates the computation of approximate dual solutions, for which dual reduced-basis
spaces must be generated in the o✏ine stage. The corresponding finite element problem can
be found in Eq. (S1.28), where Eq. (5.11) above provides the right-hand sides. The algebraic
problems can be inferred from Eq. (S1.29), where the discrete right-hand sides are canonical
unit vectors because the points x1 and x2 coincide with nodes of the finite-element mesh.

Like the primal reduced basis, the dual counterpart can be generated with a greedy algo-
rithm that minimizes the approximation error for the reduced dual solutions.

To assess the ability for uncertainty control with the dual-weighted-residual indicators (see
Remark 3.2) we generate three dual reduced bases of increasing fidelity: 1) error tolerance of
1 (basis sizes py of 10 and 11), 2) error tolerance of 0.5 (basis sizes py of 15 and 17), 3) error
tolerance of 0.1 (basis sizes py of 20 and 23).

To train the surrogates, we compute �s1(µ), �s2(µ), ⇢1(µ) (of varying fidelity), ⇢2(µ) (of
varying fidelity), for µ 2 P̄ ⇢ P with card

�
P̄
�

= 500. The first T = 100 points define the
training set Plearn ⇢ P̄ and the following 400 points constitute the validation set Pvalidation ⇢
P̄.

Figure 15 depicts the observed relationship between indicators ⇢1(µ) (of di↵erent fidelity)
and the error in the first output �s1(µ). Note that as the dual-basis size py increases, the
output error exhibits a nearly exact linear dependence on the dual-weighted residuals. This
is expected, as the residual operator is linear in the state. Therefore, the RVM with a linear
polynomial basis produces the best (i.e., minimum variance) results for the ROMES surrogates
in this case.

+ Dual-weighted residuals correlate with error

+ Uncertainty control: less variance as columns added to Y

M. DROHMANN, K. CARLBERG 27

Figure 16 reflects the necessity of employing a large enough dual reduced basis to compute
the dual-weighted-residual error indicators. For a small dual reduced basis, there is almost no
improvement in the mean, and only a slight improvement in the median; in some cases, the
‘corrected’ outputs are actually less accurate. However, the most accurate dual solutions yield
a mean and median error improvement of two orders of magnitude. This illustrates the ability
and utility of uncertainty control when dual-weighted residuals are used as error indicators.
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Figure 16. Expected improvement I(e�, µ) for ROMES surrogate (RVM, � = �s, ⇢i = yred,i(µ)tr (ured; µ),
i = 1, 2, d = idR) for a varying number of training points T and di↵erent dual reduced-basis-space dimensions.
Compare with Figure 7 (1: no improvement, > 1: error worsened, < 1: error improved).

Table 17 reports validation results for the inferred confidence intervals. While the valida-
tion results are quite good (and appear to be converging to the correct values), they are not
as accurate as those obtained for the compliant output.

6. Conclusions and outlook. This work presented the ROMES method for statistically
modeling reduced-order-model errors. In contrast to rigorous error bounds, such statistical
models are useful for tasks in uncertainty quantification. The method employs supervised
machine learning methods to construct a mapping from existing, cheaply computable ROM
error indicators to a distribution over the true error. This distribution reflects the epistemic
uncertainty introduced by the ROM. We proposed ROMES ingredients (supervised-learning
method, error indicators, and transformation function) that yield low-variance, numerically
validated models for di↵erent types of ROM errors.

+ Uncertainty control: error reduces as columns added to Y
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Summary: statistical error modeling

ROMES

+ Uses cheap error indicators to statistical quantify ROM error
+ Outperforms multifidelity correction (inputs = poor indicators)
+ Uncertainty control for general errors

Related follow-on work

Reduction error models (REM) [Manzoni et al., 2016]

Our current work

Apply to nonlinear, time-dependent problems
Collaborators: Trehan, Durlofsky (Stanford)

Reference: Drohmann, C. The ROMES method for statistical
modeling of reduced-order-model error. SIAM/ASA Journal
on Uncertainty Quantification, 3(1):116–145, 2015.
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